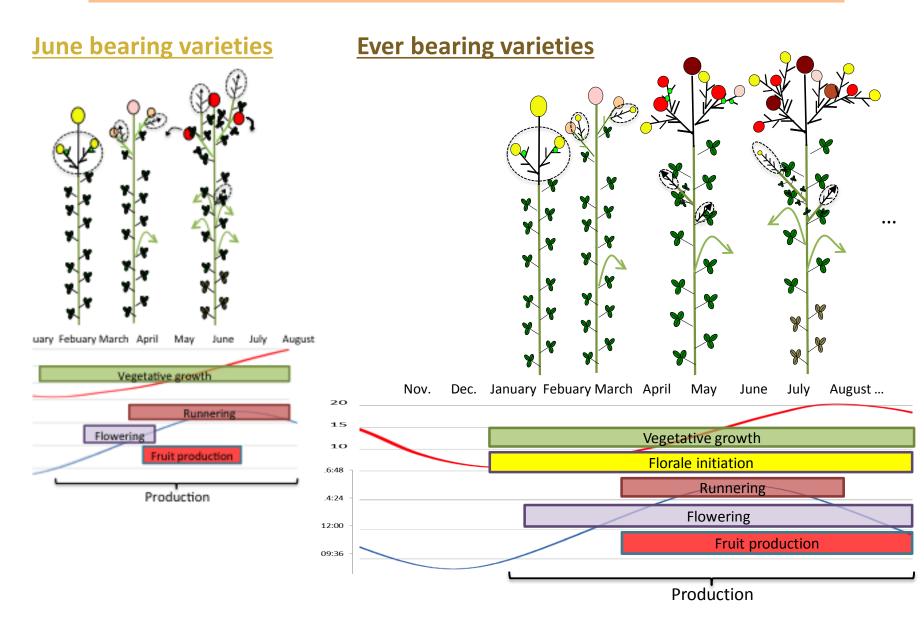
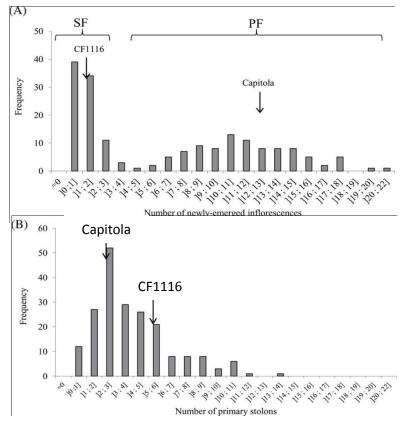
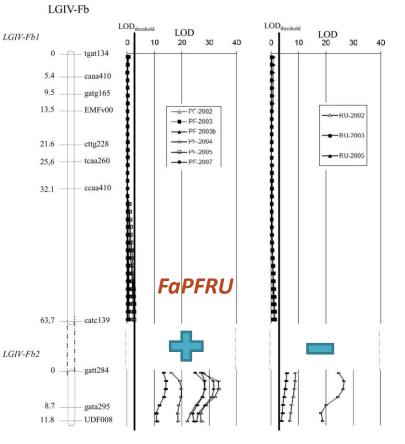


Development of markerassisted breeding strategies for strawberry

The example of the everbearing trait (or perpetual flowering trait)


Béatrice Denoyes, Amélia Gaston Philippe Chartier, Justine Perrotte

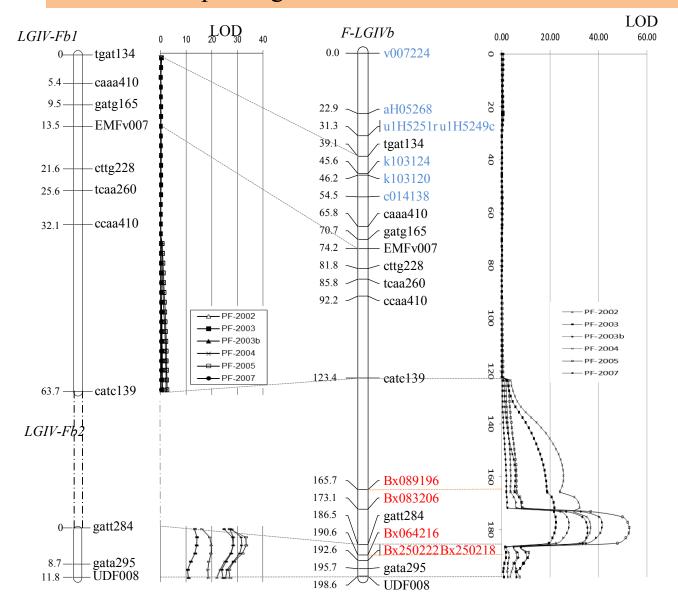



Final EUBerry Meeting, Skierniewice 13th - 16th October, 2014, Poland

Strawberry development cycle in France

Perpetual flowering : a major QTL, FaPFRU

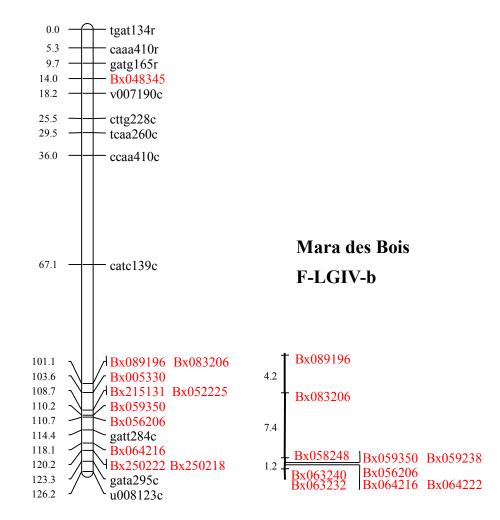
Quantitative notations for PF and RU


- 2 groups of genotypes for flowering : PF and SF

- continuous distribution for runnering

1 major QTL fot both traits, RU and PF Antagonism between the two traits in the population.

Quantitative perpetual flowering suggesting other genetic controls


Adding markers in the genomic region of interest for improving the use of markers of MAS

Same introgression in different cultivars

Capitola

F-LGIV-b

The use of developed markers in different segregating populations

Genotypes of the parents

	Polyacrylamide gel										
					(PF						,
	Génotypes	Bx089	Bx083	Bx005	Phenotype	or UF) Bx215	Bx052	Bx059	Bx056	Bx064	Bx250
	Perpetual flowering										
	Capitola	1	1	1	PF	1	1	1	1	1	1
Presence of	Mara des Bois	1	1	1	PF	1	DD ^(c)	1	1	1	DD
markers in PF	Parent_PF1	1	1	1	PF	NA	0	1	1	1	1
	_Parent_PF2	1	1	1	PF	NA	0	1	1	1	1
Once flowering											
Different	CF1116	0	0	0	OF	0	0	0	0	0	0
situations for	Pajaro	0	0	0	OF	0	0	0	0	0	0
OF genotypes:	Parent_OF1	1	1	1	OF	NA	0	1	1	1	1
Presence or	Parent_OF2	0	0	0	OF	NA	0	0	0	0	0
absence of	Parent_OF3	0	0	0	OF	NA	0	0	0	0	0
markers	Parent_OF4	1	1	1	OF	NA	0	0	0	0	1
DD, double dose.											

The use of developed markers in different segregating populations

Results in samples of segregating populations

Population	Parent 1	Parent 2	N° ind.	Bx064	Bx089	Both Markers present & Rem.	Both markers absent and NOT Rem.
Population1	Parent_OF1	Parent_PF1	10	6	6	5/7	0/3
Population2	Parent OF1	Parent PF2	10	5	5	4/4	0/6
Population3	Parent_PF1	Parent_OF2	10	9	7	3/4	4/6
Population4	Parent_PF2	Parent_OF2	10	9	9	7/7	2/3
Population5	Parent_OF3	Parent_PF1	10	9	8	1/1	7/9
Population6	Parent_OF4	Parent_PF1	10	8	6	3/3	2/7
Population7	Parent_OF4	Parent_PF2	9	6	6	0/2	6/7
Population8	Capitola	CF1116	218	110	100	95/97	90/90

The markers can be used only when they are present in the PF parents and absent in the OF parent (Populations 3, 4 and 5)

Summary of results obtained in genetic resources

RECOMBINANTS	Distribution of phenotypes					
Markers Bx056-Bx005	total	N°PF	N°OF	N° uncertain		
Nb of genotypes 1-1	35	17	10	8		
Nb of genotypes 0-0	23	0	18	5		
Nb of genotypes 1-0	7	0	6	1		
Nb of genotypes 0-1	9	3	3	3		
Nb of genotypes ?	7					
Total	81					
PF: Perpetual Flowering or everbearing / OF: Once flowering or June bearing						

The presence of markers in OF genotypes can be explained by pedigree. Old genotypes have had a double recombination around the trait

Name	Bx005	PF or OF	Bx056
Ciflorette (Mamie x Earlyglow)	1	OF	1
Earlyglow	1	OF	1
Mamie	1	OF	1

In conclusion: The presence of markers in OF genotypes is not rare.

Therefore, parents have to be genotyped before the use of markers in MAS for the everbearing trait.

What we can gain by using MAS for the everbearing trait?

Screening on SO: MAS can enable to produce more seedlings and evaluate just the right combination.

Exemple: introduction of a qualitative traits present in a everbearer variety (taste) for a june bearer project: Make more crosses (1000 seedlings) and keep just the 0-0 types: 2 weeks lab work to increase of 50% the probability of getting the right phenotype

Screening for S1: to avoid false positive for everbearers on second year: flowering observations alone on seedlings S0 indicating a possible everbearer phenotype is sometime not confirmed on the next year on the propagated plant leading to a wrong cultivation system: -> wrong use of limited number of plots (cost effective). 50 plots available: 100 candidates S1 to analyse. Cost of 2 analysis < cost of 1 plot

MAS: The gain of the probability increase of success is difficult to evaluate The loss due to a junebearer cultivar taking the room space of a everbearer cultivar in a everbearer cultivation system trial is in the 100's €

> MAS will be more efficient on several traits: everbearing + fruit quality + disease tolerance

